122
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Harris, D., Joshi, A., Khan, P. A., Gothkar, P., & Sodhi, P. S., (1999). On-farm seed priming in
semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using
participatory methods. Ex. Agric., 35, 15–29. https://doi.org/10.1017/S0014479799001027.
Harris, D., Raghuwanshi, B. S., Gangwar, J. S., Singh, S. C., Joshi, K. D., Rashid, A., &
Hollington, P. A., (2001). participatory evaluation by farmers of on-farm seed priming
in wheat in India, Nepal and Pakistan. Ex. Agric., 37, 403–415. https://doi.org/10.1017/
S0014479701003106.
Harris, D., Tripathi, R., & Joshi, A., (2002). On-farm seed priming to improve crop
establishment and yield in dry direct-seeded rice. In: Direct Seeding: Research Strategies
and Opportunities (pp. 231–240). IRRI, International Research Institute, Manila.
Hasanuzzaman, M., & Fotopoulos, V., (2019). Priming and Pretreatment of Seeds and
Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop
Plants. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-13-8625-1.
Hasanuzzaman, M., Nahar, K., Fujita, M., Ahmad, P., Chandna, R., Prasad, M. N. V., & Ozturk,
M., (2013). Enhancing plant productivity under salt stress: Relevance of poly-omics. In:
Ahmad, P., Azooz, M. M., & Prasad, M. N. V., (eds.), Salt Stress in Plants (pp. 113–156).
Springer New York, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_6.
Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J., (2000). Plant cellular and
molecular responses to high salinity. Annual Review of Plant Biology, 51, 463–499. https://
doi.org/10.1146/annurev.arplant.51.1.463.
Hauser, M. T., (2014). Molecular basis of natural variation and environmental control of
trichome patterning. Front. Plant Sci., 5. https://doi.org/10.3389/fpls.2014.00320.
Hill, H., Bradford, K. J., Cunningham, J., & Taylor, A. G., (2008). Primed lettuce seeds
exhibit increased sensitivity to moisture during aging. Acta Hortic., 135–142. https://doi.
org/10.17660/ActaHortic.2008.782.14.
Howarth, C., (2005). Genetic improvements of tolerance to high temperature. In: Abiotic
Stresses–Plant Resistance Through Breeding and Molecular Approaches (pp. 277–300).
The Haworth Press, New York.
Hozayn, M., EL-Mahdy, A. A., & Zalama, M. T., (2018). Magneto-priming for improving
germination, seedling attributes and field performance of barley (Hordeum vulgare L.)
under salinity stress. Middle East Journal of Agriculture Research, 7(3), 1006–1022.
Huang, H. H., & Wang, S. R., (2008). The effects of inverter magnetic fields on early seed
germination of mung beans. Bioelectromagnetics, 29, 649–657.
Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L.,
(2018). Chilling and drought stresses in crop plants: Implications, cross talk, and
potential management opportunities. Front. Plant Sci., 9, 393. https://doi.org/10.3389/
fpls.2018.00393.
Hussain, S., Khan, F., Hussain, H. A., & Nie, L., (2016). Physiological and biochemical
mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front. Plant Sci.,
7. https://doi.org/10.3389/fpls.2016.00116.
Hussain, S., Zheng, M., Khan, F., Khaliq, A., Fahad, S., Peng, S., Huang, J., et al., (2015).
Benefits of rice seed priming are offset permanently by prolonged storage and the storage
conditions. Sci. Rep., 5, 8101. https://doi.org/10.1038/srep08101.
Iba, K., (2002). Acclimative response to temperature stress in higher plants: Approaches of
gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53, 225–245. https://
doi.org/10.1146/annurev.arplant.53.100201.160729.